Higher Order Terms in Multiscale Expansions: A Linearized KdV Hierarchy

نویسندگان

  • Hervé LEBLOND
  • H Leblond
چکیده

We consider a wide class of model equations, able to describe wave propagation in dispersive nonlinear media. The Korteweg-de Vries (KdV) equation is derived in this general frame under some conditions, the physical meanings of which are clarified. It is obtained as usual at leading order in some multiscale expansion. The higher order terms in this expansion are studied making use of a multi-time formalism and imposing the condition that the main term satisfies the whole KdV hierarchy. The evolution of the higher order terms with respect to the higher order time variables can be described through the introduction of a linearized KdV hierarchy. This allows one to give an expression of the higher order time derivatives that appear in the right hand member of the perturbative expansion equations, to show that overall the higher order terms do not produce any secularity and to prove that the formal expansion contains only bounded terms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The KdV hierarchy and the propagation of solitons on very long distances

The Korteweg-de Vries (KdV) equation is first derived from a general system of partial differential equations. An analysis of the linearized KdV equation satisfied by the higher order amplitudes shows that the secular-producing terms in this equation are the derivatives of the conserved densities of KdV. Using the multi-time formalism, we prove that the propagation on very long distances is gov...

متن کامل

A new criterion for the existence of KdV solitons in ferromagnets

The long-time evolution of the KdV-type solitons propagating in ferromagnetic materials is considered trough a multi-time formalism, it is governed by all equations of the KdV Hierarchy. The scaling coefficients of the higher order time variables are explicitly computed in terms of the physical parameters, showing that the KdV asymptotic is valid only when the angle between the propagation dire...

متن کامل

Complete eigenfunctions of linearized integrable equations expanded around a soliton solution

Complete eigenfunctions for an integrable equation linearized around a soliton solution are the key to the development of a direct soliton perturbation theory. In this article, we explicitly construct such eigenfunctions for a large class of integrable equations including the KdV, NLS and mKdV hierarchies. We establish the striking result that the linearization operators of all equations in the...

متن کامل

On the (Non)-Integrability of KdV Hierarchy with Self-consistent Sources

Nonholonomic deformations of integrable equations of the KdV hierarchy are studied by using the expansions over the so-called “squared solutions” (squared eigenfunctions). Such deformations are equivalent to a perturbed model with external (self-consistent) sources. In this regard, the KdV6 equation is viewed as a special perturbation of KdV. Applying expansions over the symplectic basis of squ...

متن کامل

Numerical Study of a Multiscale Expansion of the Korteweg De Vries Equation

ABSTRACT. The Cauchy problem for the Korteweg de Vries (KdV) equation with small dispersion of order ǫ, ǫ ≪ 1, is characterized by the appearance of a zone of rapid modulated oscillations. These oscillations are approximately described by the elliptic solution of KdV where the amplitude, wave-number and frequency are not constant but evolve according to the Whitham equations. Whereas the differ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001